21. (10 分)如图,点 B,C 在线段 AD 的异侧,E,F 分别是线段 AB,CD 上的点,且∠AEG = ∠AGE,∠DCG = ∠DGC.
(1)求证:AB//CD;
(2)若∠AGE + ∠AHF = 180°,且∠BFC - 30° = 2∠C,求∠B 的度数.

答案:21.(1)
∵∠AGE = ∠DGC,∠AEG = ∠AGE,∠DCG = ∠DGC,
∴∠AEG = ∠DCG.
∴AB//CD (2)
∵∠AGE = ∠DGC,∠AGE + ∠AHF = 180°,
∴∠DGC + ∠AHF = 180°.
∴BF//EC.
∴∠BFC + ∠C = 180°.
∵∠BFC - 30° = 2∠C,
∴∠BFC = 2∠C + 30°.
∴2∠C + 30° + ∠C = 180°.
∴∠C = 50°.
∴∠BFC = 130°.
∵AB//CD,
∴∠B + ∠BFC = 180°.
∴∠B = 50°
22. (10 分)已知 A 是直线 HD 上一点,C 是直线 GE 上一点,B 是直线 HD,GE 之间的一点,∠HAB + ∠BCG = ∠ABC.
(1)如图①,求证:AD//CE.
(2)如图②,作∠BCF = ∠BCG,CF 与∠BAH 的平分线交于点 F. 若 α + β = 40°,求∠B + ∠F 的度数.
(3)如图③,CR 平分∠BCG,BN 平分∠ABC,BM//CR. 若∠HAB = 50°,求∠NBM 的度数.

答案:22.(1)如图,过点B作BP//AD.
∴∠ABP = ∠HAB.
∵∠ABC = ∠ABP + ∠CBP,∠ABC = ∠HAB + ∠BCG,
∴∠CBP = ∠BCG.
∴BP//CE.
∴AD//CE (2)
∵AF平分∠HAB,
∴∠HAF = ∠FAB = β.
∴∠HAB = 2∠FAB = 2β.
∵∠BCF = ∠BCG = α,
∴∠FCG = 2∠FCB = 2α.
∵∠B = ∠HAB + ∠BCG,
∴易得∠F = ∠HAF + ∠FCG.
∵α + β = 40°,
∴∠B + ∠F = ∠HAB + ∠BCG + ∠HAF + ∠FCG = 2β + α + β + 2α = 3α + 3β = 3(α + β) = 120° (3)
∵CR平分∠BCG,BN平分∠ABC,
∴∠BCG = 2∠BCR,∠ABC = 2∠NBC.
∵BM//CR,
∴∠BCR = ∠MBC.
∴∠BCG = 2∠MBC.
∵∠HAB + ∠BCG = ∠ABC,
∴∠HAB = ∠ABC - ∠BCG = 2∠NBC - 2∠MBC = 2(∠NBC - ∠MBC) = 2∠NBM.
∵∠HAB = 50°,
∴∠NBM = $\frac{1}{2}$∠HAB = 25°
