1. (2024·崇川期中)用加减消元法解二元一次方程组$\begin{cases}3x - y = 5\textcircled{1},\\5x + 2y = 15\textcircled{2}\end{cases}$时,下列方法中,无法消元的是( )
A.$\textcircled{1}×2+\textcircled{2}$
B.$\textcircled{1}×5-\textcircled{2}×3$
C.$\textcircled{1}×3-\textcircled{2}×5$
D.$\textcircled{1}×(-5)+\textcircled{2}×3$
答案:1.C
解析:
A. $\textcircled{1}×2+\textcircled{2}$:$6x - 2y + 5x + 2y = 10 + 15$,消去$y$;
B. $\textcircled{1}×5-\textcircled{2}×3$:$15x - 5y - 15x - 6y = 25 - 45$,消去$x$;
C. $\textcircled{1}×3-\textcircled{2}×5$:$9x - 3y - 25x - 10y = 15 - 75$,未消元;
D. $\textcircled{1}×(-5)+\textcircled{2}×3$:$-15x + 5y + 15x + 6y = -25 + 45$,消去$x$。
C
2. 小杰在用加减法解二元一次方程组$\begin{cases}6x + 5y = -5\textcircled{1},\\3x - y = 7\textcircled{2}\end{cases}$时,利用$\textcircled{1}+\textcircled{2}×a$消去$y$,则$a$的值是( )
A.$-2$
B.$2$
C.$-5$
D.$5$
答案:2.D
解析:
要消去$y$,需使方程$\textcircled{1}$与$\textcircled{2}× a$中$y$的系数互为相反数。方程$\textcircled{1}$中$y$的系数为$5$,方程$\textcircled{2}$中$y$的系数为$-1$,则$5 + (-1)× a = 0$,解得$a = 5$。
D
3. 解下列方程组:①$\begin{cases}x = 2y,\\3x - 5y = 9;\end{cases}$②$\begin{cases}4x - 2y = 7,\\3x + 2y = 10;\end{cases}$③$\begin{cases}y = -x,\\3x - 4y = 1;\end{cases}$④$\begin{cases}4x + 5y = 9,\\4x - 7y = -3.\end{cases}$比较适宜的方法是( )
A.①②用代入法,③④用加减法
B.②③用代入法,①④用加减法
C.①③用代入法,②④用加减法
D.②④用代入法,①③用加减法
答案:3.C
解析:
①方程组中$x = 2y$,直接代入$3x - 5y = 9$求解,适宜用代入法;
②方程组中$-2y$与$2y$互为相反数,相加可消去$y$,适宜用加减法;
③方程组中$y = -x$,直接代入$3x - 4y = 1$求解,适宜用代入法;
④方程组中$4x$与$4x$相同,相减可消去$x$,适宜用加减法。
综上,①③用代入法,②④用加减法,答案选C。
4. 已知用加减法解方程组$\begin{cases}2x - 4y = 7,\\3x + 2y = 3\end{cases}$可转化为解一元一次方程.若消去$y$,则含有$x$的一元一次方程为 ______ .
答案:4.8x=13
解析:
解:$\begin{cases}2x - 4y = 7, \quad①\\3x + 2y = 3. \quad②\end{cases}$
$②×2$,得$6x + 4y = 6. \quad③$
$① + ③$,得$8x = 13$.
$8x=13$
5. 如果两数$x,y$满足$\begin{cases}2x + 3y = 9,\\3x + 2y = 11,\end{cases}$那么$x - y=$ ______ .
答案:5.2
解析:
$\begin{cases}2x + 3y = 9, \quad①\\3x + 2y = 11, \quad②\end{cases}$
② - ①得:$(3x + 2y) - (2x + 3y) = 11 - 9$
$3x + 2y - 2x - 3y = 2$
$x - y = 2$
2
6. (教材 P96 例 6 变式)用加减法解下面的方程组:
(1)$\begin{cases}2x - 3y = 5,\\5x + 6y = -28;\end{cases}$
(2)$\begin{cases}3x - 5y = 11,\\9x + 2y = -1.\end{cases}$
答案:$6.(1)\begin{cases} x = -2, \\ y = -3 \end{cases} (2)\begin{cases} x = \frac{1}{3}, \\ y = -2 \end{cases}$
解析:
(1)
$\begin{cases}2x - 3y = 5 & ① \\5x + 6y = -28 & ②\end{cases}$
①×2,得$4x - 6y = 10$ ③
② + ③,得$9x = -18$
解得$x = -2$
将$x = -2$代入①,得$2×(-2) - 3y = 5$
$-4 - 3y = 5$
$-3y = 9$
解得$y = -3$
所以方程组的解为$\begin{cases} x = -2 \\ y = -3 \end{cases}$
(2)
$\begin{cases}3x - 5y = 11 & ① \\9x + 2y = -1 & ②\end{cases}$
①×3,得$9x - 15y = 33$ ③
② - ③,得$17y = -34$
解得$y = -2$
将$y = -2$代入①,得$3x - 5×(-2) = 11$
$3x + 10 = 11$
$3x = 1$
解得$x = \frac{1}{3}$
所以方程组的解为$\begin{cases} x = \frac{1}{3} \\ y = -2 \end{cases}$
7. 利用加减消元法解方程组$\begin{cases}3x - 4y = 16\textcircled{1},\\5x + 6y = 33\textcircled{2}.\end{cases}$嘉嘉说:“要消去$x$,可以将$\textcircled{1}×3-\textcircled{2}×5$.”淇淇说:“要消去$y$,可以将$\textcircled{1}×3+\textcircled{2}×2$.”关于嘉嘉和淇淇的说法,下列判断正确的是( )
A.嘉嘉对,淇淇不对
B.嘉嘉不对,淇淇对
C.嘉嘉和淇淇都对
D.嘉嘉和淇淇都不对
答案:7.B
解析:
要消去$x$,应使$x$的系数相等或互为相反数。$\textcircled{1}×5$得$15x - 20y = 80$,$\textcircled{2}×3$得$15x + 18y = 99$,嘉嘉说“$\textcircled{1}×3 - \textcircled{2}×5$”,此时$x$的系数为$9 - 25 = -16$,不能消去$x$,嘉嘉说法错误。
要消去$y$,$\textcircled{1}×3$得$9x - 12y = 48$,$\textcircled{2}×2$得$10x + 12y = 66$,两式相加得$19x = 114$,可消去$y$,淇淇说法正确。
B
8. 小娟认为$\begin{cases}x = -1,\\y = 2\end{cases}$是关于$x,y$的方程$ax + by = 10$的解,小惠认为$\begin{cases}x = 2,\\y = -1\end{cases}$是关于$x,y$的方程$ax + by = 10$的解,两人谁也不能说服对方.如果你想让她们都正确,那么需要添加的条件是( )
A.$a = 12,b = 12$
B.$a = 9,b = 10$
C.$a = 10,b = 11$
D.$a = 10,b = 10$
答案:8.D
解析:
将$\begin{cases}x = -1\\y = 2\end{cases}$代入$ax + by = 10$,得$-a + 2b = 10$;将$\begin{cases}x = 2\\y = -1\end{cases}$代入$ax + by = 10$,得$2a - b = 10$。联立方程组$\begin{cases}-a + 2b = 10\\2a - b = 10\end{cases}$,解得$\begin{cases}a = 10\\b = 10\end{cases}$。
D