如果一个三角形的两个角与另一个三角形的两个角
对应相等
,那么这两个三角形相似. 用符号语言表述:如图,在$\triangle ABC$和$\triangle A'B'C'$中,$\because \angle A = \angle A'$,
$\angle B = \angle B'$(或$\angle C = \angle C'$)
,$\therefore$
$\triangle ABC \sim \triangle A'B'C'$
.

答案:对应相等 $\angle B = \angle B'$(或$\angle C = \angle C'$) $\triangle ABC \sim \triangle A'B'C'$
1. 如图,$\triangle ABC$与$\triangle BDE$都是等边三角形,点D在边AC上(不与点A,C重合),DE与AB相交于点F,则与$\triangle BFD$相似的三角形是 (
C
)

$A.\triangle BFE$
$B.\triangle BDC$
$C.\triangle BDA$
$D.\triangle AFD$
答案:1.C
解析:
证明:
∵△ABC与△BDE都是等边三角形,
∴∠ABC=∠EBD=60°,∠A=∠C=60°,
∴∠ABD+∠DBC=∠DBC+∠CBE=60°,
∴∠ABD=∠CBE,
∵∠BFD=∠E+∠EBF=60°+∠EBF,∠BDA=∠C+∠DBC=60°+∠DBC,
且∠EBF=∠DBC,
∴∠BFD=∠BDA,
又
∵∠ABD=∠FBD,
∴△BFD∽△BDA.
答案:C
2. 如图,在$\triangle ABC$中,点$D$在边$AB$上,点$E$在边$AC$上,且$\angle 1 = \angle 2 = \angle 3$,则与$\triangle ADE$相似的三角形的个数为 (
C
)

A.4
B.3
C.2
D.1
答案:2.C
解析:
证明:
1. 在$\triangle ADE$和$\triangle ABC$中,
$\angle A = \angle A$(公共角),
$\angle ADE = \angle 1 = \angle 2 = \angle ABC$,
$\therefore \triangle ADE \sim \triangle ABC$(AA)。
2. 在$\triangle ADE$和$\triangle ACD$中,
$\angle A = \angle A$(公共角),
$\angle AED = 180° - \angle A - \angle 1$,
$\angle ACD = \angle 3 = \angle 1$,
$\angle ADC = 180° - \angle A - \angle ACD = 180° - \angle A - \angle 1 = \angle AED$,
$\therefore \triangle ADE \sim \triangle ACD$(AA)。
综上,与$\triangle ADE$相似的三角形有$\triangle ABC$和$\triangle ACD$,共2个。
答案:C
3. 如图,在$\triangle ABC$中,$D$为边$AC$上一点,且$\angle DBA = \angle C$. 若$AD = 2\ cm$,$AB = 4\ cm$,则$CD$的长为
6
$ cm$.

答案:3.6
解析:
证明:在$\triangle ABC$和$\triangle ADB$中,
$\because \angle DBA = \angle C$,$\angle A = \angle A$,
$\therefore \triangle ABC \sim \triangle ADB$。
$\therefore \dfrac{AB}{AD} = \dfrac{AC}{AB}$。
$\because AD = 2\ cm$,$AB = 4\ cm$,
$\therefore \dfrac{4}{2} = \dfrac{AC}{4}$,解得$AC = 8\ cm$。
$\therefore CD = AC - AD = 8 - 2 = 6\ cm$。
4. 如图,在$\triangle ABC$和$\triangle DEC$中,$\angle A = \angle D$,$\angle BCE = \angle ACD$. 求证:$AB · EC = DE · BC$.

答案:4. $\because \angle BCE = \angle ACD$, $\therefore \angle BCE + \angle ACE = \angle ACD + \angle ACE$, 即 $\angle ACB = \angle DCE$. $\because \angle A = \angle D$, $\therefore \triangle ABC \sim \triangle DEC$. $\therefore AB:DE = BC:EC$. $\therefore AB · EC = DE · BC$
解析:
证明:
∵∠BCE=∠ACD,
∴∠BCE+∠ACE=∠ACD+∠ACE,即∠ACB=∠DCE.
∵∠A=∠D,
∴△ABC∽△DEC.
∴AB:DE=BC:EC.
∴AB·EC=DE·BC.
5. 如图,$BD$是$\angle ABC$的平分线,$E$是$BD$延长线上的一点,且$AE = AB$. 若$AB = 6$,$BD = 4$,$DE = 5$,求$BC$的长.

答案:5. $\because BD$ 是 $\angle ABC$ 的平分线, $\therefore \angle ABD = \angle CBD$. $\because AB = AE$, $\therefore \angle ABD = \angle E$. $\therefore \angle E = \angle CBD$. $\because \angle EDA = \angle BDC$, $\therefore \triangle ADE \sim \triangle CDB$. $\therefore \frac{AE}{CB} = \frac{DE}{DB}$. $\because AE = AB$, $AB = 6$, $\therefore AE = 6$. $\because BD = 4$, $DE = 5$, $\therefore \frac{6}{BC} = \frac{5}{4}$. $\therefore BC = \frac{24}{5}$