10.(新情境·日常生活)某校教学楼后面紧邻一个土坡,坡上面是一块平地,如图,$BC // AD$,斜坡$AB$长$\sqrt{26} m$,坡度$i = 3:2$。为了防止山体滑坡,保障安全,学校决定对该土坡进行改造,地质人员勘测,当坡角不超过$45°$时,可确保山体不滑坡。
(1)求改造前坡顶$B$到地面的垂直距离$BE$的长;
(2)为确保安全,学校计划改造时保持坡脚$A$不动,坡顶$B$沿$BC$削进到$F$处,则$BF$长至少是多少米?

答案:10.(1)$\because$坡度$i = 3:2$,$\therefore$设$BE = 3x m(x>0)$,则$AE = 2x m$。
$\therefore$在$ Rt\triangle AEB$中,$AB=\sqrt{AE^{2}+BE^{2}}=\sqrt{(2x)^{2}+(3x)^{2}}=\sqrt{13}x( m)$。$\because AB=\sqrt{26} m$,$\therefore\sqrt{13}x=\sqrt{26}$,解得$x=\sqrt{2}$。
$\therefore AE = 2\sqrt{2} m$,$BE = 3\sqrt{2} m$。$\therefore$改造前坡顶$B$到地面的垂直距离$BE$的长为$3\sqrt{2} m$
(2)如图,过点$F$作$FH\perp AD$于点$H$,连接$AF$,则易得$BF = HE$,$FH = BE = 3\sqrt{2} m$。当$\angle FAH = 45^{\circ}$时,$\triangle AHF$是等腰直角三角形,$\therefore AH = FH = 3\sqrt{2} m$。由(1)知,$AE = 2\sqrt{2} m$,$\therefore BF = HE = AH - AE = 3\sqrt{2}-2\sqrt{2}=\sqrt{2}( m)$。$\therefore BF$长至少是$\sqrt{2} m$
