9. 如图,在 Rt$\triangle ABC$ 中,$\angle ACB = 90^{\circ}$,$BC = 2$,点$D$ 在$AC$ 上,连接$BD$,使得$BD = AC$,以$AC$ 为边向外作$\triangle ACE$. 若$CE // BD$,$\tan E = 2$,则边$AE$ 的长为
$\sqrt{5}$
.

答案:9.$\sqrt{5}$ 解析:如图,过点A作边CE的垂线,垂足为M.
∵AM⊥CE,∠ACB = 90°,
∴∠ACB = ∠AMC,即∠BCD = ∠AMC.
∵CE//BD,
∴∠BDC = ∠ACM.
在△BCD和△AMC中,$\begin{cases} \angle BCD = \angle AMC \\ \angle BDC = \angle ACM \end{cases}$,
∴△BCD≌△AMC.
∴BC = BD = AC,AM = 2.
在Rt△AME中,
∵tanE = $\frac{AM}{ME}$ = 2,即$\frac{2}{ME}$ = 2,
∴ME = 1.
∴AE = $\sqrt{ME^{2}+AM^{2}}$ = $\sqrt{1^{2}+2^{2}}$ = $\sqrt{5}$.

10. 如图,在$\triangle ABC$ 中,$AB = AC = 5$,$\cos \angle ABC = \frac{3}{5}$,$P$ 为边$AC$ 上一点,则线段$BP$长的取值范围是
$\frac{24}{5}$ ≤ BP ≤ 6
.

答案:10.$\frac{24}{5}$ ≤ BP ≤ 6 解析:如图,过点A作BC的垂线,垂足为M.
在Rt△ABM中,
∵cos∠ABC = $\frac{BM}{AB}$ = $\frac{3}{5}$,
∴BM = $\frac{3}{5}$ × 5 = 3.
∴AM = $\sqrt{AB^{2}-BM^{2}}$ = $\sqrt{5^{2}-3^{2}}$ = 4.
∵AB = AC,
∴BC = 2BM = 6.
过点B作AC的垂线,垂足为N.
∵$S_{\triangle ABC}$ = $\frac{1}{2}$BC·AM = $\frac{1}{2}$AC·BN,
∴BN = $\frac{BC·AM}{AC}$ = $\frac{6×4}{5}$ = $\frac{24}{5}$,即线段BP长的最小值为$\frac{24}{5}$.
当点P在点C处时,线段BP长取得最大值,为6.
∴线段BP长的取值范围是$\frac{24}{5}$ ≤ BP ≤ 6.

11. 如图,在 Rt$\triangle ABC$ 中,$\angle ACB = 90^{\circ}$,$CD \perp AB$ 于点$D$,$AD = 6\sqrt{3}$,$BC = 4\sqrt{3}$,写出解 Rt$\triangle ABC$ 的过程.

答案:11.
∵∠ACB = 90°,CD⊥AB,
∴∠CDB = ∠ACB.
∵∠B = ∠B,
∴△CBD∽△ABC.
∴$\frac{BC}{BA}$ = $\frac{BD}{BC}$,
∴$BC^{2}$ = BD·BA,即$BC^{2}$ = (AB - AD)·AB.
∴$(4\sqrt{3})^{2}$ = (AB - 6$\sqrt{3}$)·AB,解得AB = 8$\sqrt{3}$(负值舍去).
∴在Rt△ABC中,sinA = $\frac{BC}{AB}$ = $\frac{4\sqrt{3}}{8\sqrt{3}}$ = $\frac{1}{2}$,
∴∠A = 30°.
∴∠B = 90° - ∠A = 60°.
∵cosA = $\frac{AC}{AB}$,
∴AC = AB·cosA = 8$\sqrt{3}$ × cos30° = 8$\sqrt{3}$ × $\frac{\sqrt{3}}{2}$ = 12.
12. 如图,在 Rt$\triangle ABC$ 中,$\angle ACB = 90^{\circ}$,$CD$ 是$AB$ 边上的中线,$CE \perp AB$ 于点$E$,$BC = 2$,$\tan \angle ACD = \frac{1}{2}$. 求:

(1)$AC$ 的长;
(2)$\sin \angle CDB$ 的值.
答案:12.(1)
∵∠ACB = 90°,CD是AB边上的中线,
∴CD = AD = BD = $\frac{1}{2}$AB.
∴∠A = ∠ACD.
∴tanA = tan∠ACD = $\frac{1}{2}$.
∵在Rt△ABC中,tanA = $\frac{BC}{AC}$,BC = 2,
∴AC = $\frac{BC}{\tan A}$ = 4.
(2)
∵BC = 2,AC = 4,∠ACB = 90°,
∴在Rt△ABC中,由勾股定理,得AB = $\sqrt{AC^{2}+BC^{2}}$ = $\sqrt{4^{2}+2^{2}}$ = 2$\sqrt{5}$.
∴CD = $\frac{1}{2}$AB = $\sqrt{5}$.
∵CE⊥AB于点E,
∴$S_{\triangle ABC}$ = $\frac{1}{2}$AB·CE = $\frac{1}{2}$AC·BC.
∴CE = $\frac{AC·BC}{AB}$ = $\frac{4×2}{2\sqrt{5}}$ = $\frac{4\sqrt{5}}{5}$.
在Rt△CDE中,sin∠CDB = $\frac{CE}{CD}$ = $\frac{\frac{4\sqrt{5}}{5}}{\sqrt{5}}$ = $\frac{4}{5}$.
13. 如图,在 Rt$\triangle ABC$ 和 Rt$\triangle BCD$ 中,$\angle ABC = \angle BCD = 90^{\circ}$,$BD$ 与$AC$ 相交于点$E$,$AB = 9$,$\cos \angle BAC = \frac{3}{5}$,$\tan \angle DBC = \frac{5}{12}$. 求:
(1) 边$CD$ 的长;
(2)$\triangle BCE$ 的面积.

答案:13.(1)在Rt△ABC中,
∵∠ABC = 90°,
∴cos∠BAC = $\frac{AB}{AC}$ = $\frac{9}{15}$ = $\frac{3}{5}$.
∴AC = 15.
∴BC = $\sqrt{AC^{2}-AB^{2}}$ = 12.
在Rt△BCD中,
∵∠BCD = 90°,
∴tan∠DBC = $\frac{CD}{BC}$ = $\frac{5}{12}$.
∴CD = 5,即边CD的长是5.
(2)
∵∠ABC + ∠BCD = 180°,
∴AB//CD.
∴△CED∽△AEB.
∴$\frac{CE}{AE}$ = $\frac{CD}{AB}$ = $\frac{5}{9}$,
∴$\frac{CE}{CA}$ = $\frac{5}{14}$.
过点E作EF⊥BC于点F,则EF//AB.
∴△EFC∽△ABC.
∴$\frac{CE}{CA}$ = $\frac{EF}{AB}$,
∴$\frac{5}{14}$ = $\frac{EF}{9}$.
∴EF = $\frac{45}{14}$.
∴$S_{\triangle BCE}$ = $\frac{1}{2}$BC·EF = $\frac{1}{2}$ × 12 × $\frac{45}{14}$ = $\frac{135}{7}$.