4. 如图,抛物线$y = ax^2 + bx + c(a \neq 0)$的顶点坐标为$(2, -1)$,并且与$y$轴交于点$C(0,3)$,与$x$轴交于$A$,$B$两点.
(1) 求抛物线对应的函数解析式.
(2) 设抛物线的对称轴与直线$BC$交于点$D$,$E$为直线$BC$上一动点(不与点$B$,$C$重合),过点$E$作$y$轴的平行线$EF$,与抛物线交于点$F$.是否存在点$E$,使得以$D$,$E$,$F$为顶点的三角形与$\triangle BCO$相似?若存在,求出点$E$的坐标;若不存在,请说明理由.

答案:(1)设抛物线对应的函数解析式为$y = a(x - 2)^{2} - 1$。把$C(0, 3)$代入,得$4a - 1 = 3$,解得$a = 1$。$\therefore$抛物线对应的函数解析式为$y = (x - 2)^{2} - 1 = x^{2} - 4x + 3$。
(2)存在。如图,连接$DF$。当$y = 0$时,$x^{2} - 4x + 3 = 0$,解得$x_1 = 1$,$x_2 = 3$。$\therefore A(1, 0)$,$B(3, 0)$。设直线$BC$对应的函数解析式为$y = kx + m$。把$B(3, 0)$,$C(0, 3)$代入,得$\begin{cases}3k + m = 0\\m = 3\end{cases}$,解得$\begin{cases}k = -1\\m = 3\end{cases}$。$\therefore$直线$BC$对应的函数解析式为$y = -x + 3$。$\because$抛物线的对称轴为直线$x = 2$,$\therefore$易得$D(2, 1)$。$\because EF// OC$,$\therefore\angle FED = \angle OCB$。$\therefore$分两种情况讨论:
①当$\angle DFE = 90^{\circ}$时,$\triangle DFE\sim\triangle BOC$,此时$DF// x$轴。当$y = 1$时,$x^{2} - 4x + 3 = 1$,解得$x_1 = 2 + \sqrt{2}$,$x_2 = 2 - \sqrt{2}$。$\therefore$点$F$的横坐标为$2 + \sqrt{2}$或$2 - \sqrt{2}$。当$x = 2 + \sqrt{2}$时,$y = -x + 3 = 1 - \sqrt{2}$,此时点$E$的坐标为$(2 + \sqrt{2}, 1 - \sqrt{2})$;当$x = 2 - \sqrt{2}$时,$y = -x + 3 = 1 + \sqrt{2}$,此时点$E$的坐标为$(2 - \sqrt{2}, 1 + \sqrt{2})$。
②当$\angle FDE = 90^{\circ}$时,$\triangle EDF\sim\triangle COB$,此时$DF\perp BC$。$\therefore$易设直线$DF$对应的函数解析式为$y = x + n$。把$D(2, 1)$代入,得$2 + n = 1$,解得$n = -1$。$\therefore y = x - 1$。联立$\begin{cases}y = x - 1\\y = x^{2} - 4x + 3\end{cases}$,解得$\begin{cases}x = 1\\y = 0\end{cases}$或$\begin{cases}x = 4\\y = 3\end{cases}$。$\therefore$点$F$的坐标为$(1, 0)$或$(4, 3)$。当$x = 1$时,$y = -x + 3 = 2$;当$x = 4$时,$y = -x + 3 = -1$。$\therefore$点$E$的坐标为$(1, 2)$或$(4, -1)$。
综上所述,满足条件的点$E$的坐标为$(2 + \sqrt{2}, 1 - \sqrt{2})$或$(2 - \sqrt{2}, 1 + \sqrt{2})$或$(1, 2)$或$(4, -1)$。
