12. 如图,点$B(m,n)$在函数$y = \frac{6}{x}(x > 0)$的图象上,过点$B$分别作$x$轴和$y$轴的平行线,交函数$y = \frac{3}{x}(x > 0)$的图象于点$A$,$C$,连接$OA$,$OC$,$AC$.
(1)若点$B$的坐标为$(2,3)$,求点$A$的坐标和直线$OC$对应的函数解析式.
(2)若$B$为函数图象上的动点,则四边形$OABC$的面积是否变化?若不变,请说明理由;若变化,请用含$m$的代数式表示四边形$OABC$的面积.
(3)当$OC$平分$OA$与$x$轴正半轴的夹角时,求证:$AC$是$\angle OAB$的平分线.

答案:12.(1)$\because B(2,3)$,$AB // x$轴,$BC // y$轴,$\therefore$点$A$的纵坐标为$3$,点$C$的横坐标为$2$。又$\because$点$A$,$C$在函数$y = \frac{3}{x}$的图象上,$\therefore$易得$A(1,3)$,$C(2,\frac{3}{2})$。设直线$OC$对应的函数解析式为$y = kx$,$\therefore 2k = \frac{3}{2}$。$\therefore k = \frac{3}{4}$。$\therefore$直线$OC$对应的函数解析式为$y = \frac{3}{4}x$
(2)不变 理由:如图,延长$BA$,$BC$,分别交$y$轴于点$M$,交$x$轴于点$N$,则由题意可知,$BM // x$轴,$BN // y$轴,$\therefore S_{四边形BMON} = 6$,$S_{\triangle AOM} = S_{\triangle CON} = \frac{1}{2} × 3 = \frac{3}{2}$。$\therefore S_{四边形OABC} = S_{四边形BMON} - S_{\triangle AOM} - S_{\triangle CON} = 3$。$\therefore$四边形$OABC$的面积不变。
(3)如图,过点$C$作$CD \perp OA$于点$D$。由题意可知$CB \perp AB$,$CN \perp x$轴。$\because OC$平分$OA$与$x$轴正半轴的夹角,$\therefore CD = CN$。$\because$点$B(m,n)$在函数$y = \frac{6}{x}(x > 0)$的图象上,点$C$在函数$y = \frac{3}{x}(x > 0)$的图象上,$BC // y$轴,$\therefore$易得$B(m,\frac{6}{m})$,$C(m,\frac{3}{m})$。$\therefore BN = \frac{6}{m}$,$CN = \frac{3}{m}$。$\therefore BN = 2CN$。$\therefore BC = CN$。$\therefore CD = CB$。$\because CD \perp OA$,$CB \perp AB$,$\therefore AC$是$\angle OAB$的平分线
