8.如图,直线$l_1的表达式为y = \frac{4}{3}x + 4$,与x轴、y轴分别交于点A,B;直线$l_2$与x轴交于点C(2,0),与y轴交于点$D(0,\frac{3}{2})$,两直线交于点$P(-\frac{6}{5},\frac{12}{5})$.
(1)求点A,B的坐标及直线$l_2$的函数表达式;
(2)求证:△AOB≌△APC;
(3)若将直线$l_2$向右平移m个单位,与x轴、y轴分别交于点$C',D'$,使得以点A,B,C',D'为顶点的图形是轴对称图形,求m的值.

答案:(1)当x = 0时,y = $\frac{4}{3}$x + 4 = 4,
∴点B的坐标为(0,4).
当y = 0时,有$\frac{4}{3}$x + 4 = 0,解得x = −3,
∴点A的坐标为(−3,0).
设直线l2的表达式为y = kx + b(k≠0),
将C(2,0),D(0,$\frac{3}{2}$)代入y = kx + b,
得$\begin{cases}2k + b = 0\\b = \frac{3}{2}\end{cases}$解得$\begin{cases}k = -\frac{3}{4}\\b = \frac{3}{2}\end{cases}$
∴直线l2的表达式为y = −$\frac{3}{4}$x + $\frac{3}{2}$.
(2)
∵A(−3,0),C(2,0),B(0,4),P(−$\frac{6}{5}$,$\frac{12}{5}$),
∴AO = 3,AC = 5,AB = $\sqrt{3^{2}+4^{2}}$ = 5,
AP = $\sqrt{[-\frac{6}{5}-(-3)]^{2}+(\frac{12}{5}-0)^{2}}$ = 3,
∴AO = AP,AB = AC.
在△AOB和△APC中,$\begin{cases}AO = AP\\∠BAO = ∠CAP\\AB = AC\end{cases}$
∴△AOB≌△APC(SAS).
(3)①如图
(1),当点B在点D'下方时,连接BC'.
∵平移后直线C'D'的表达式为y = −$\frac{3}{4}$(x - m) + $\frac{3}{2}$ = −$\frac{3}{4}$x + $\frac{3}{4}$m + $\frac{3}{2}$,
∴点C'的坐标为(m + 2,0),点D'的坐标为(0,$\frac{3}{4}$m + $\frac{3}{2}$).
由题意,可得以点A,B,C',D'为顶点的图形是轴对称图形,当△ABC'≌△D'BC'时,有AB = D'B,AC' = D'C'.
∵A(−3,0),B(0,4),
∴D'B = $\frac{3}{4}$m + $\frac{3}{2}$ - 4 = $\frac{3}{4}$m - $\frac{5}{2}$,
AC' = m + 2 - (-3) = m + 5,
D'C' = $\sqrt{(m + 2)^{2}+(\frac{3}{4}m + \frac{3}{2})^{2}}$ = $\frac{5}{4}$(m + 2).
∴$\begin{cases}\frac{3}{4}m - \frac{5}{2} = 5\\m + 5 = \frac{5}{4}(m + 2)\end{cases}$解得m = 10.
②如图
(2),当点B在点D'上方时,连接BC',AD'.
若△AC'D'≌△BC'D',则AC' = BC',
由①可得BC' = $\sqrt{(m + 2)^{2}+4^{2}}$,AC' = m + 5,
∴m + 5 = $\sqrt{(m + 2)^{2}+4^{2}}$,
解得m = −$\frac{5}{6}$(不合题意,舍去);
若△ABD'≌△C'BD',则AB = C'B,
∴OA = OC',即3 = m + 2,解得m = 1.
故以点A,B,C',D'为顶点的图形是轴对称图形时,m的值为10或1.