解:解方程$5m + 2x = \frac{1}{2} + x,$
移项得$2x - x = \frac{1}{2} - 5m,$
解得$x = \frac{1}{2} - 5m。$
解方程$x(m + 1) = m(x + 1),$
去括号得$mx + x = mx + m,$
移项得$mx + x - mx = m,$
解得$x = m。$
由题意得$\frac{1}{2} - 5m - m = 2,$
合并同类项得$\frac{1}{2} - 6m = 2,$
移项得$-6m = 2 - \frac{1}{2},$
即$-6m = \frac{3}{2},$
解得$m = -\frac{1}{4}。$
答:当$m = -\frac{1}{4}$时,满足条件。