电子课本网 第40页

第40页

信息发布者:
解:$(-2)^3 ÷ (-3)^2$
$= (-8) ÷ 9$
$= -\frac{8}{9}$
解:$(-2)^4 × (-0.5)^4$
$= 16 × \left(-\frac{1}{2}\right)^4$
$= 16 × \frac{1}{16}$
$= 1$
解:首先将带分数$2\frac{1}{4}$转换为假分数$\frac{9}{4},$
$-1^2 ÷ 2\frac{1}{4} × \left(-\frac{2}{3}\right)^2$
$= -1 ÷ \frac{9}{4} × \frac{4}{9}$
$= -1 × \frac{4}{9} × \frac{4}{9}$
$= -\frac{16}{81}$
解:$8 + (-4)^2 × \left(-\frac{1}{2}\right)^3$
$= 8 + 16 × \left(-\frac{1}{8}\right)$
$= 8 - 2$
$= 6$
225
225
-216
-216
$a^n \times b^n$
$解:(a×b)^{n}=(a×b)×(a×b)×…\underbrace{(a×b)}_{n个(a×b)}×(a×b)$
$=a×a×a×..×\underbrace{a}_{n个a}×b×b×...\underbrace{b}_{n个b}×b$
$=a^{n}·b^{n}$
解:$a²≥0$
所以$a²+5≥5$
此时$a=0$
∴最小值为​$5$​
解:​$2×(a-1)²≥0$​
当​$a=1$​时,最小值为​$-3$​
解:(1)设$s = 1 + 2 + 2^2 + 2^3 + \dots + 2^{2024},$①
将等式两边同时乘2得:$2s = 2 + 2^2 + 2^3 + \dots + 2^{2024} + 2^{2025},$②
② - ①得:$2s - s = 2^{2025} - 1,$
所以$s = 2^{2025} - 1,$即$1 + 2 + 2^2 + 2^3 + \dots + 2^{2024} = 2^{2025} - 1。$
(2)设$s = 1 + 3 + 3^2 + 3^3 + \dots + 3^{20},$①
将等式两边同时乘3得:$3s = 3 + 3^2 + 3^3 + \dots + 3^{20} + 3^{21},$②
② - ①得:$3s - s = 3^{21} - 1,$
即$2s = 3^{21} - 1,$
所以$s = \frac{3^{21} - 1}{2},$即$1 + 3 + 3^2 + 3^3 + \dots + 3^{20} = \frac{3^{21} - 1}{2}。$